Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{5}=\frac{y+5}{7}=\frac{x-2+y+5}{5+7}=\frac{x+y+3}{12}=\frac{21+3}{12}=2\)
\(\Rightarrow\frac{x-2}{5}=2\Rightarrow x=12\)
\(\frac{y+5}{7}=2\Rightarrow y=9\)
Vậy x=12;y=9
\(\frac{x-2}{5}=\frac{y+5}{7}\) VÀ \(x+y=21\)
Giải
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x-2}{5}=\frac{y+5}{7}=\frac{\left(x-2\right)+\left(y+5\right)}{5+7}\)
\(=\frac{x-2+y+5}{12}\)
\(=\frac{\left(x+y\right)+\left(-2+5\right)}{12}\)
\(=\frac{21+3}{12}\)
\(=\frac{24}{12}=2\)
Từ +)\(\frac{x-2}{5}=2\Rightarrow x-2=2.5=10\)
\(x=10+2=12\)
+) \(\frac{y+5}{7}=2\Rightarrow y+5=2.7=14\)
\(y=14-5=9\)
Vậy x = 12 ; y = 9
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x-2}{5}=\frac{y+5}{7}=\frac{x-2+y+5}{5+7}=\frac{21+3}{12}=\frac{24}{12}=2\)
\(\Rightarrow\text{ }x=2\cdot5+2=12\)
\(\Rightarrow\text{ }y=2\cdot7-5=9\)
Vậy \(\left(x\text{ ; }y\right)=\left(12\text{ ; }9\right)\)