\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(x^3+3^3+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\left(x+3\right)\left(x^2-2x\right)=0\)
\(x\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}ho\text{ặc}}x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}ho\text{ặc}}x=2\)
Vậy \(\orbr{\begin{cases}x=0\\x=-3\end{cases}ho\text{ặc}}x=2\)