\(|x-\frac{1}{3}|=\frac{5}{6}\)
\(\Rightarrow x-\frac{1}{3}=\frac{5}{6}\) hoặc \(x-\frac{1}{3}=-\frac{5}{6}\)
\(\Rightarrow x=\frac{5}{6}+\frac{1}{3}\) hoặc \(x=-\frac{5}{6}+\frac{1}{3}\)
\(\Rightarrow x=\frac{7}{6}\) hoặc \(x=-\frac{3}{6}=-\frac{1}{2}\)
\(\left|x-\frac{1}{3}\right|=\frac{5}{6}\)
=> Các trường hợp
TH1 : \(x-\frac{1}{3}=\frac{5}{6}\)
\(x=\frac{5}{6}+\frac{1}{3}\)
\(x=\frac{7}{6}\)
TH2 : \(x-\frac{1}{3}=\frac{-5}{6}\)
\(x=\frac{-5}{6}+\frac{1}{3}\)
\(x=\frac{-1}{2}\)
Ta có:
\(\left|x-\frac{1}{3}\right|=\frac{5}{6}\)
Ta có 2 trường hợp:
\(\Rightarrow x-\frac{1}{3}=\frac{5}{6}\) hoặc \(x-\frac{1}{3}=-\frac{5}{6}\)
\(\Rightarrow x=\frac{5}{6}+\frac{1}{3}\) \(x=-\frac{5}{6}+\frac{1}{3}\)
\(\Rightarrow x=\frac{7}{6}\) \(x=-\frac{1}{2}\)
Vậy \(x\in\left\{\frac{7}{6};-\frac{1}{2}\right\}\)