\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Th1 : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}< 0\end{cases}=>\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}}\)
TH2 : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}>0\end{cases}=>\hept{\begin{cases}x< 2\\x>\frac{-2}{3}\end{cases}}}\)
Ủng hộ nha
Để \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) thì x-2 và x+\(\frac{2}{3}\) phải cùng âm hoặc cùng dương
+)Nếu x-2 và x+\(\frac{2}{3}\) cùng âm
=>\(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Rightarrow}x< -\frac{2}{3}}\)
+)Nếu x-2 và x+\(\frac{2}{3}\) cùng dương
=>\(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\Rightarrow}x>2}\)
Vậy \(x< -\frac{2}{3}\) hoặc x>2 thì \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)