\(a\)\(,\)\(\left(2x-3\right)^2\)\(=\)\(4^2\)(1)
mà ta có \(4^2\)=\(\left(-4\right)^2\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\left(2x-3\right)^2\)=\(4^2\)=\(\left(-4\right)^2\)
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)(thỏa mãn \(x\)\(\in\)\(Q\))
Vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)
\(b,\)\(\left(3x-2\right)^5\)\(=\)\(-243\)
\(\Rightarrow\)\(\left(3x-2\right)^5\)\(=\)\(\left(-3\right)^5\)
\(\Rightarrow\)\(3x-2=-3\)
\(\Rightarrow\)\(3x=-1\)
\(\Rightarrow\)\(x=\frac{-1}{3}\)(thỏa mãn \(x\in Q\))
Vậy \(x=\frac{-1}{3}\)
\(c,\)\(\left(7x+2\right)^{-1}=3^{-2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{3^2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{9}\)
\(\Rightarrow\)\(7x+2=9\)
\(\Rightarrow\)\(7x=7\)
\(\Rightarrow x=1\)(thỏa mãn \(x\in Q\))
Vậy \(x=1\)
A,\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=3,5\)
Tương tự