\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{120}=\frac{5}{8}\)
\(\frac{x}{2008}-2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{15}-\frac{1}{16}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-2.\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)
=> \(\frac{x}{2008}=\frac{5}{8}+\frac{3}{8}=1=\frac{2008}{2008}\)
=> x = 2008