a) 6 ⋮ (x - 1)
=> x - 1 ϵ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
TH1: x - 1 = -6 => x = -5 (Thỏa mãn)
TH2: x - 1 = -3 => x = -2 (Thỏa mãn)
TH3: x - 1 = -2 => x = -1 (Thỏa mãn)
TH4: x - 1 = -1 => x = 0 (Thỏa mãn)
TH5: x - 1 = 1 => x = 2 (Thỏa mãn)
TH6: x - 1 = 2 => x = 3 (Thỏa mãn)
TH7: x - 1 = 3 => x = 4 (Thỏa mãn)
TH8: x - 1 = 6 => x = 7 (Thỏa mãn)
Vậy x ϵ {-5; -2; -1; 0; 2; 3; 4; 7}
b) (x + 2) ⋮ (x - 1)
Ta có: (x + 2) = (x - 1) + 3
Vì (x - 1) ⋮ (x - 1) nên để (x - 1) + 3 ⋮ (x - 1) thì 3 ⋮ (x - 1)
=> x - 1 ϵ Ư(3) = {-3; -1; 1; 3}
TH1: x - 1 = -3 => x = -2 (Thỏa mãn)
TH2: x - 1 = -1 => x = 0 (Thỏa mãn)
TH3: x - 1 = 1 => x = 2 (Thỏa mãn)
TH4: x - 1 = 3 => x = 4 (Thỏa mãn)
Vậy x ϵ {-2; 0; 2; 4}