2 + 4 + 6 + 8 + ... + 2.x = 210
=> 2.1 + 2.2 + 2.3 +2.4 + ... + 2.x = 210
=> 2.( 1 + 2 + 3 + 4 + ... +x ) = 210
=> 2. [ x.( x+ 1) /2 ] = 210
=> x. ( x + 1 ) = 210
hay x.( x + 1) = 14.(14 + 1)
Vậy x = 14
\(2+4+6+8+...+2.x=210\)
\(=2.1+2.2+2.3+...+2.x=210\)
\(=2.\left(1+2+3+....+x\right)=210\)
=\(2.\left[\frac{x.\left(x+1\right)}{2}\right]=210\)
\(\Rightarrow x.\left(x+1\right)=14.\left(14+1\right)\)
\(=x.\left(x+1\right)=210\)
=> x=14
Ta có: 2+4+6+...+2x = 210
=> 2.1+2.2+2.3+....+2.x = 210
=> 2.(1+2+3+....+x) =210
=> 2.[x.(x+1)/2] = 210
=> x.(x+1) = 210
Mà x.(x+1) = 14.15
=> x = 14