\(\hept{\begin{cases}x+4=3^a\\4x+7=3^b\end{cases}}\Rightarrow\left(4x+7\right)-\left(x+4\right)=3^b-3^a\)
\(\Leftrightarrow3x+3=3^b-3^a\)
\(\Leftrightarrow x+1=3^{b-1}-3^{a-1}\)
Thế vào \(x+4=3^a\)ta được:
\(3^{b-1}-3^{a-1}+3=3^a\)
\(\Leftrightarrow3\left(3^{b-2}+1\right)=3^{a-1}\left(3+1\right)\)
\(\Leftrightarrow3\left(3^{b-2}+1\right)=3^{a-1}.4\)(*)
có \(3^{b-2}+1⋮̸3,\forall b\inℤ_+\)nên (*) tương đương với
\(\hept{\begin{cases}3=3^{a-1}\\3^{b-2}+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
Thử lại ta thấy thỏa mãn, suy ra \(x=5\).