a)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\left(\frac{x-1}{11}+3\right)+\left(\frac{x-1}{12}+2\right)=\left(\frac{x-1}{13}+3\right)+\left(\frac{x-1}{14}+2\right)\)
\(\left(\frac{x-1}{11}+\frac{x-1}{12}\right)+\left(3+2\right)=\left(\frac{x-1}{13}+\frac{x-1}{14}\right)+\left(3+2\right)\)
\(\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}+\frac{x-1}{14}=0\)
\(\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)\(\Rightarrow\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\frac{x-1}{11}+3+\frac{x-1}{12}+2=\frac{x-1}{13}+3+\frac{x-1}{14}+2\)
\(\left(\frac{x-1}{11}+\frac{x-1}{12}\right)+\left(2+3\right)=\left(\frac{x-1}{13}+\frac{x-1}{14}\right)+\left(2+3\right)\)
\(\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\frac{12\left(x-1\right)}{11.12}+\frac{11\left(x-1\right)}{11.12}=\frac{14\left(x-1\right)}{13.14}+\frac{13\left(x-1\right)}{13.14}\)
\(\frac{23\left(x-1\right)}{121}=\frac{27\left(x-1\right)}{182}\)
\(\Rightarrow23\left(x-1\right).182=27\left(x-1\right)121\)
4168(x-1)=3267(x-1)
4168(x-1)-3267(x-1)=0
901(x-1)=0
x-1=0
x=0+1
x=1
Vậy x=1