\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Rightarrow100x+5050=5750\Rightarrow x=5750-5050\)
\(100x=700\Rightarrow x=700:100=7\)
\(a,\text{ }720\text{ : }\left[41-\left(2x-5\right)\right]=2^3\cdot5\)
\(720\text{ : }\left[42-2x+5\right]=8\cdot5\)
\(720\text{ : }\left[42+5-2x\right]=40\)
\(720\text{ : }\left[47-2x\right]=40\)
\(47-2x=720\text{ : }40\)
\(47-2x=18\)
\(2x=47-18\)
\(2x=29\)
\(x=\frac{29}{2}\)
\(b,\text{ }\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+\left[\left(100-1\right)\text{ : }1+1\right]\text{ x }\left(100+1\right)\text{ }:\text{ }2=5750\)
\(100x+100\text{ x }101\text{ : }2=5750\)
\(100x+10100\text{ : }2=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=700\text{ : }100\)
\(x=7\)