\(\left(2x+1\right)^2=9\)
⇒ \(\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2\\2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
⇒[2x+1=32x+1=−3⇒[2x=22x=−4⇒[x=1x=−2⇒[2x+1=32x+1=−3⇒[2x=22x=−4⇒[x=1x=−2