1) ĐKXĐ: \(x\ge0\)
\(\sqrt{x}=2\sqrt{2}\Rightarrow x=8\left(tmđkxđ\right)\)
2) ĐKXĐ: \(x\ge-1\)
\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)
\(\Leftrightarrow\frac{x+1}{2}=\frac{5}{4}\)
\(\Leftrightarrow2x+2=5\Leftrightarrow x=\frac{3}{2}\left(TMĐKXĐ\right)\)
1,
\(\sqrt{x}=2\sqrt{2}\)
=> \(\left(\sqrt{x}\right)=\left(2\sqrt{2}\right)^2\)
=> \(x=8\)
2.
\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)
=> \(\left(\sqrt{\frac{x+1}{2}}\right)=\left(\frac{\sqrt{5}}{2}\right)^2\)
=> \(\frac{x+1}{2}=\frac{5}{4}\)
=> 4 ( x + 1 ) = 5.2
=> 4x + 4 = 10
=> 4x = 6
=. x = \(\frac{3}{2}\)