1/ <=> x2 - x -(x2 - x)/x3 = 0
<=> (x2 - x)(1 - 1/x3) = 0
Phần còn lại bạn làm tiếp nha điều kiện x#0
1/ <=> x2 - x -(x2 - x)/x3 = 0
<=> (x2 - x)(1 - 1/x3) = 0
Phần còn lại bạn làm tiếp nha điều kiện x#0
a,\(\frac{3}{x}+\frac{1}{x+3}+\frac{3}{x+6}+\frac{1}{x+7}=\frac{1}{1-x}\)
b, \(\frac{1}{x-5}+\frac{1}{x-2}+\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+3}=\frac{3x-3}{4}\)
c,\(\frac{1}{x-3}+\frac{1}{3x+1}+\frac{10x-13}{4x-6}=\frac{1}{x+1}+\frac{1}{2x-1}+\frac{1}{3x+7}\)
d,\(\frac{x^2+x+1}{2x-1}\left(\frac{3x^2-x+5}{4x-2}-3\right)=8\)
e,\(\frac{2x^2-3}{3x-1}\left(2x-\frac{7+4x}{3x-1}\right)=2\)
f,\(\frac{x\left(3x-1\right)\left(3x^2+1\right)\left(6x^2-3x-1\right)}{\left(x+1\right)^3}=\frac{1}{2}\)
g, \(x\left(x^2+2\right)\left(x^2+2x+8+\frac{12}{x-2}\right)=3\left(x-2\right)\)
\(0=-\frac{\left(x+2\right)^2+12}{\left(x+2\right)^2}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2}-\frac{\left(x+3\right)^2+3}{\left(x+3\right)^2}+\frac{\left(x+4\right)^2+4}{\left(x+4\right)^2}\)
Giải pt sau :\(\frac{25}{x}+9\sqrt{9x^2-4}=\frac{2}{x}+\frac{18}{x^2+1}\)
B2: Cho x;y >0 .Tìm min \(B=\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)\left(2+x+y\right)\)
Không cần các bạn giải quyết hết, nhé! GẤP, GẤP, GẤP
Giải các phương trình sau:
a) x4 + 2x3 - 39x2 - 4x + 4 = 0
b) (x + 4)4 + (x + 2)2 = 34
c) \(\frac{2x}{3x^2-5x+2}+\frac{13x}{3x^2+x+2}=6\)
d) \(\frac{x^4+3x^2+1}{x^3+x^2-x}=3\)
e) \(\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}=15\)
f) \(\left(\frac{x+1}{x-2}\right)^2+\frac{x-1}{x+3}=12\left(\frac{x-2}{x+3}\right)^2\)
g) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+7x+6}=6\)
\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-3}{x-\sqrt{x}-2}\right):\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{2}{\sqrt{x}-2}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x+\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-\sqrt{x}+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-x+3+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
Câu 21:
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge x^4y^4+\frac{x^8y^8}{2}-1-2x^2y^2-x^4y^4=\left(x^2y^2-1\right)^2+\frac{1}{2}\left(x^4y^4-1\right)^2-\frac{5}{2}\ge-\frac{5}{2}.\)
Dấu = xảy ra khi x=y=1
Giải phương trình
1. x4+(x-1)(x2-2x+2)=0
2. \(\left(\frac{x+1}{x-2}\right)^2+\left(\frac{x+1}{x-4}\right)=12\left(\frac{x-2}{x-4}\right)^2\)
3. \(\frac{1}{x^2}-\frac{1}{\left(x+2\right)^2}=1\)
Tìm x,y sao cho
\(\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)=\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)
Cho \(\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)=\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\). Tìm x,y>0