Cho x,y>0,x+y=1.CM:`A=(x+1/x)^2+(y+1/y)^2>=25/2`
`A=x^2+1/x^2+2+y^2+1/y^2+2`
`=x^2+y^2+1/x^2+1/y^2+4`
`=(x^2+1/(16x^2))+(y^2+1/(16y^2))+4+15/16(1/x^2+1/y^2)`
Áp dụng BĐt cosi và `1/a^2+1/b^2>=8/(a+b)^2`
`=>A>=1/2+1/2+4+15/16(8/(x+y)^2)`
`<=>A>=5+15/2=25/2`
Dấu "=" `<=>x=y=1/2`
Không làm theo cách sau:
bài 1: vẽ đồ thị y = -x, y = \(\frac{1}{2}\), y = 2x + 1
bài 2: cho P = \(\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)(x>= 0, x khác 16)
a, rút gọn P
b, tính P khi x = 25
c, tìm x thuộc Z để P thuộc Z
d, tìm Min P
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
tìm x
a, x + 1/2x - 25%x = 10
b, x+x - 1+ x - 2 + x -3 + x - 4 + ... + x-50 = 255
c, 1 + 5 + 9 + 13 + 16 + ... + x =501501
Cho xyz=1 và x+y+z=3. Tìm GTNN của\(B_{8=^{ }}+y^{16}+z^{16}+x^{16}\)
Tìm x biết:
a, \(\sqrt{x^2-4x+4}=3\)
b, \(\sqrt{x^2-10x+25}=x+3\)
c, \(\sqrt{x+1+2\sqrt{x}}-\sqrt{x+16-8\sqrt{x}}=3\)
4 - căn x bình + 1 - 2 căn 16 ( x bình + 1) + 5 căn 25 ( x bình + 1 )
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
F(x)=x5+ax4+bx3+cx2+dx+e .Biết f(1)=1 ;f(2)=4 ;f(3)=9 ;f(4)=16 ;f(5)=25 ; a)Tính f(6)? b)Tìm số tự nhiên n. Biết f(x) chia cho (x-n) dư 448767600049