\(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=10.531441+8.531441\)
\(2.3^x=\left(10+8\right).531441\)
\(2.3^x=18.531441\)
\(2.3^x=9565938\)
\(3^x=9565938:2\)
\(3^x=4782969\)
\(3^x=3^{14}\)
\(\Rightarrow x=14\)
\(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=10.531441+8.531441\)
\(2.3^x=\left(10+8\right).531441\)
\(2.3^x=18.531441\)
\(2.3^x=9565938\)
\(3^x=9565938:2\)
\(3^x=4782969\)
\(3^x=3^{14}\)
\(\Rightarrow x=14\)
Tìm x:
1) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
2) \(2\cdot3^x=10\cdot3^{12}+8\cdot27^4\)
3) \(\left(19x+2\cdot5^2\right):14=\left(13-8\right)^2-4^2\)
1. Tìm x
a) \(2^x+5=21\)
b) \(2^x-1+3^2=5^2+2\cdot5\)
c) \(\left(2x-1\right)^3+5=130\)
d) \(5^{2x-3}-2\cdot5^2=5^2\)
e) \(3^{2x+1}-2=3^2+\left[5^2-3\left(2^2-1\right)\right]\)
f) \(\left(7^x-11\right)^3=2^5\cdot5^2+200\)
g) \(2\cdot3^x=10\cdot3^{12}+8\cdot27^4\)
Bài 2 : Tìm x , biết :
a, \(\left(19x+2\cdot5^2\right)\text{ : }14=\left(13-8\right)^2-4^2\)
b, \(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=1240\)
c, \(11-\left(-53+x\right)=97\)
d, \(-\left(x+84\right)+213=-16\)
e, \(13-12+11+10-9+8-7-6+5-4+3+2-1=x\)
trình bày cách tính nhanh các phép tính sau đây
a)\(\frac{2^8\cdot6}{3^3\cdot5^4}:\frac{8^3\cdot9}{5^3\cdot3^3}-\left(2^{14}+3^{19}\right)\cdot\left(3^{81}+5^{64}\right)\left(2^4-4^2\right)\)
Rút gọn:
a,\(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b,\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2014\cdot2016}\right)\)
a) \(\dfrac{1}{2}\cdot\dfrac{-3}{4}\cdot\dfrac{-5}{8}\cdot\dfrac{-8}{9}\)
b) \(\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}\right)\cdot\left(\dfrac{10\cdot13}{3}-\dfrac{2^2}{3}-\dfrac{5^3}{3}\right)\)
câu này làm cx đc hoặc ko làm cx ko sao :)
\(\dfrac{8}{9}+\dfrac{1}{9}\cdot\dfrac{2}{9}+\dfrac{1}{9}\cdot\dfrac{7}{9}\)
Tìm x biết:\(\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
Tính tổng :
a) \(A=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
b) \(B=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
c) \(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
d) \(D=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
e) \(E=\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\right)\cdot1482\cdot185\cdot8\)
\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+............+\frac{2}{x+\left(x+1\right)}=\frac{2008}{2010}\)