\(-TH1:\left|4-x\right|=4-x\\ =>\left(4-x\right):3=\left|-\dfrac{6}{5}\right|\\ =>\left(4-x\right):3=\dfrac{6}{5}\\ =>4-x=\dfrac{6}{5}\times3\\ =>4-x=\dfrac{18}{5}\\ =>x=4-\dfrac{18}{5}\\ =>x=\dfrac{2}{5}\\ -TH2:\left|4-x\right|=x-4\\ =>\left(x-4\right):3=\left|-\dfrac{6}{5}\right|\\ =>\left(x-4\right):3=\dfrac{6}{5}\\ =>x-4=\dfrac{6}{5}\times3\\ =>x-4=\dfrac{18}{5}\\ =>x=\dfrac{18}{5}+4\\ =>x=\dfrac{38}{5}\)
Vậy \(S=\left\{\dfrac{38}{5};\dfrac{2}{5}\right\}\)