áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{x+2y+3z}{9}\)
x-y=15 => y=x-15
\(\frac{x}{2}=\frac{x+2y+3z}{9}\Leftrightarrow9x=2x+4y+6z\Leftrightarrow7x-4y=6z\Leftrightarrow7x-4\left(x-15\right)=6z\Leftrightarrow3x+60=6z\Leftrightarrow z=\frac{1}{2}x+10\)
\(\frac{2y}{3}=\frac{x+2y+3z}{9}\Leftrightarrow18y=3x+6y+9z\Leftrightarrow3x-12\left(x-15\right)+9\left(\frac{1}{2}x+10\right)=0\Leftrightarrow-\frac{9}{2}x=-270\Leftrightarrow x=60\)
=> y=60-15=45; z= \(\frac{1}{2}.60+10=40\)
vì x/2=2y/3 nen
x*3=2*2y=4y
3x=4y
x/4=y/3
theo tinh caht cua day ti so bang nhau ta co
x-y/4-3=15/1=15