Đặt \(k=\frac{x}{3}=\frac{y}{7}\)
Suy ra : \(k^2=\frac{x}{3}.\frac{y}{7}=\frac{xy}{21}=\frac{84}{21}=4\)
=> k = -2;2
+ k = -2 thì \(\frac{x}{3}=-2\Rightarrow x=-6\)
\(\frac{x}{7}=-2\Rightarrow x=-14\)
+ k = 2 thì : \(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{x}{7}=2\Rightarrow x=14\)
Vậy .............................
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)
\(x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow x=3.2=6;y=7.2=14\)
Với \(k=-2\Rightarrow x=3.\left(-2\right)=-6;y=7.\left(-2\right)=-14\)
Vậy ....