<= >(x+x+....+x) + (1+2+3+4+5+......+50) = 1375
<=> 50x + 50 . (50+1) : 2 = 1375
<=> 50x + 1275 = 1375
<=> 1375 - 1275 = 50x
<=> 50x = 100
<=> x= 100 : 50
x = 2
(X+1)+(X+2)+(X+3)+...+(x+50)=1375
=> {X+X+X+...+X}+{1+2+3+...+50}=1375
=> {X+X+X+...+X}+{(1+50)x[(50-1):1+1]:2}=1375
=> {X+X+X+...+X}+{51x[49:1+1]:2}=1375
=> {X+X+X+...+X}+{51x[49+1]:2}=1375
=> {X+X+X+...+X}+{51x50:2}=1375
=> 50X+{2550:2}=1375
=> 50X+1275=1375
=> 50X=1375-1275
=> 50X=100
=> X=100:5
=> X=2
<= >(x+x+....+x) + (1+2+3+4+5+......+50) = 1375
<=> 50x + 50 . (50+1) : 2 = 1375
<=> 50x + 1275 = 1375
<=> 1375 - 1275 = 50x
<=> 50x = 100
<=> x= 100 : 50
x = 2
2 + X + 3 +X + X = 50
Ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+50\right)=1375\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+50\right)=1375\)
\(50x+\frac{\left(50+1\right).50}{2}=1375\)
\(50x=1375-1275\)
\(x=\frac{100}{50}\)
\(x=2\)
Vậy \(x=2\)
yyugkgkbyvbvritybgjuugk8yugbkhlbgy67lt8l