\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}\Rightarrow2x-\sqrt{x}=\sqrt{x}+1\Rightarrow2x-2\sqrt{x}-1=0\)
\(\Delta=\left(-2\right)^2-4.\left(-1\right).2=12\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-\sqrt{12}}{4}=\dfrac{1-\sqrt{3}}{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+\sqrt{12}}{4}=\dfrac{1+\sqrt{3}}{2}\end{matrix}\right.\)