\(12-x⋮8-x\)
\(\Rightarrow4+\left(8-x\right)⋮8-x\)
Do \(4+\left(8-x\right)⋮8-x\)và \(8-x⋮8-x\)nên \(4⋮8-x\)
\(\Rightarrow8-x\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{12;10;9;7;6;4\right\}\)
\(\frac{12-x}{8-x}=\frac{8-x+4}{8-x}=\frac{8-x}{8-x}+\frac{4}{8-x}=1+\frac{4}{8-x}\)
=> 8-x \(\in\) Ư(4) = {-1,-4,1,4}
Ta có bảng :
8-x | -1 | -4 | 1 | 4 |
x | 9 | 12 | 7 | 4 |
Vậy x = {4,7,9,12}
Làm lại
\(\frac{12-x}{8-x}=\frac{8-x+4}{8-x}=\frac{8-x}{8-x}+\frac{4}{8-x}=1+\frac{4}{8-x}\)
=> \(8-x\inƯ\left(4\right)=\left\{-1,-2,-4,1,2,4\right\}\)
Ta có bảng :
8-x | -1 | -2 | -4 | 1 | 2 | 4 |
x | 9 | 10 | 12 | 7 | 6 | 4 |
Vậy x = {4,6,7,9,10,12}