\(\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=\dfrac{x-3}{x-3}+\dfrac{6}{x-3}=1+\dfrac{6}{x-3}\) \(ĐKXĐ:x\ne3\)
để Q nguyên thì 6⋮x-3
=> x-3 thuộc ước của 6
=> mà \(Ư\left(6\right)\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Ta có bảng sau
x-3 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
x | 2(tm) | 4(tm | 1(tm | 5(tm | 0(tm | 6(tm | -3(tm) | 9(tm) |
=> \(x\in\left\{2;4;1;5;0;6;-3;9\right\}\)
Ta có:
\(\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\)
Vậy để Q nguyên thì \(x-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Rồi bạn kẻ bảng là ra nha.
\(Q=\dfrac{x+3}{x-3}=1+\dfrac{6}{x-3}\) (x \(\ne\) 3)
Để \(Q\in Z\Rightarrow\left\{{}\begin{matrix}1\in Z\\\dfrac{6}{x-3}\in Z\end{matrix}\right.\)
Để \(\dfrac{6}{x-3}\in Z\Rightarrow x-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 4 (TM) | 2 (TM) | 5 (TM) | 1 (TM) | 6 (TM) | 0 (TM) | 9 (TM) | -3 (TM) |
\(\Rightarrow x\in\left\{4;2;5;1;6;0;9;-3\right\}\) thì Q \(\in Z\)