xy + x + y = 1
=> x(y + 1) + (y + 1) = 2
=> (x + 1)(y + 1) = 2
=> x + 1; y + 1 \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng :
x + 1 | 1 | -1 | 2 | -2 |
y + 1 | 2 | -2 | 1 | -1 |
x | 0 | -2 | 1 | -3 |
y | 1 | -3 | 0 | -2 |
Vậy ...
\(xy+x+y=1\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=2\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=2\)
\(\Rightarrow x+1;y+1\inƯ\left(2\right)=\left\{\mp1;\mp2\right\}\)
Ta có bảng xét :
x+1 | -1 | 1 | -2 | 2 |
y+1 | -2 | 2 | -1 | 1 |
x | -2 | 0 | -3 | 1 |
y | -3 | 0 | -2 | 1 |