ĐKXĐ:\(x\ne\left\{-2;-4;-8;-14\right\}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow2\left(x+8\right)\left(x+14\right)+4\left(x+2\right)\left(x+14\right)+6\left(x+2\right)\left(x+4\right)=x\left(x+8\right)\left(x+14\right)\)
\(\Leftrightarrow2x^2+44x+224+4x^2+64x+112+6x^2+36x+48=x^3+22x^2+112x\)
\(\Leftrightarrow12x^2+144x+384=x^3+22x^2+112x\)
\(\Leftrightarrow x^3+22x^2-12x^2+112x-144x-384=0\)
\(\Leftrightarrow x^3+10x^2-32x-384=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2+16x+64\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+8\right)^2=0\)
\(\Leftrightarrow x=6\)(x=-8 loại vì x=-8 thì PT không xác định)
Điều kiện: x+ 2 \(\ne\) 0 ; x+ 4 \(\ne\) 0; x+ 8 \(\ne\) 0 ; x + 14 \(\ne\) 0
<=> \(\frac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\frac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\frac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
<=> \(\frac{x+4}{\left(x+2\right)\left(x+4\right)}-\frac{x+2}{\left(x+2\right)\left(x+4\right)}+\frac{x+8}{\left(x+4\right)\left(x+8\right)}-\frac{x+4}{\left(x+4\right)\left(x+8\right)}+\frac{x+14}{\left(x+8\right)\left(x+14\right)}-\frac{x+8}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)<=> \(\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
<=> \(\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
<=> \(\frac{12\left(x+4\right)}{\left(x+2\right)\left(x+14\right)\left(x+4\right)}=\frac{x\left(x+14\right)}{\left(x+2\right)\left(x+4\right)\left(x+14\right)}\)
<=> 12(x + 4) = x (x + 14)
<=> 12x + 48 = x2 + 14 x
<=> x2 + 2x - 48 = 0
<=> x2 + 8x - 6x - 48 = 0
<=> x(x + 8) - 6 (x + 8) = 0
<=> (x - 6)(x + 8) = 0 <=> x - 6 = 0 (do x + 8 \(\ne\) 0)
<=> x = 6
Vậy x = 6