x+(x+1)+(x+2)+(x+3)+.......+(x+30)=1240
\(\Leftrightarrow\left(x+x+x.+...x\right)+\left(1+2+3...+30\right)=1240\)
\(\Rightarrow30x+465=1240\)
\(\Rightarrow30x=1240-465=775\)
\(\Rightarrow30x=775\)
\(V\text{ậy}x=\frac{155}{6}\)
1+2+3+.....+x=210
\(\left(1+x\right).x=210\)
\(\Rightarrow x=14\)
x+(x+1)+(x+2)+...+(x+30)=1240
=>x+x+1+x+2+...+x+30=1240
=>(x+x+x+...+x)+(1+2+...+30)=1240
=>31x+[(30-1):1+1] . (30+1) :2=1240
=>31x+30.31:2=1240
=>31x+15.31=1240
=>31(x+15)=1240
=>x+15=1240:31=40
=>x=40-15=25
1+2+3+...+x=210
=>[(x-1):1+1]. (x+1) : 2= 210
=>x.(x+1):2=210
=>x(x+1)=210.2=420
=>x(x+1)=20.21
=>x=20