Cho bất phương trình:
-4\(\sqrt{\left(4-x\right)\left(2+x\right)}\le x^2-2x+a-18\)
Tìm a để bất phương trình nghiệm đúng với mọi x, \(-2\le x\le4\)
Tìm m để bất phương trình : \(\left(m-2\right)x^2+2\left(m+1\right)x+m< 0\)có nghiệm với mọi x thuộc \(\left(1;+\infty\right)\)
cho phương trình x^2-2(m+1)x+2m=0 (m là tham số)
1) chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2) tìm các giá trị của m để phương trình có hai nghiệm cùng dương
3) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
1/ Cho phương trình: 3mx^2+2(2m+1)+m=0
Xác định m để phương trình có 2 nghiệm âm
2/ Tìm m để phương trình: (m-1)x^2+2x+m=0 có ít nhất 1 nghiệm ko âm
tìm m thuộc z sao cho phương trình ko có nghiệm nguyên : x^2-(m+4)x +(4m-2)=0
Bài 1 : tìm các giá trị của m để phương trình có nghiệm kép : A. 3x² - 2mx + 1 = 0 B. 4mx² - 6x - m-3 = 0 C. (m+2) x² - 2 (m-1) x + 4 = 0 D. (m-6) x² + 3mx - 2 = 0
Cho phương trình (ẩn x):x^2+ 2.(m+2)+4m-1=0(1).chứng minh với mọi giá trị của m phương trình(1) luôn có 2 nghiệm phân biệt .Tìm 1 hệ thức liên hệ giữa 2 nghiệm đó của phương trình (1) không phụ thuộc vào m
Cho phương trình : x^2 - 2(m+1)x + 2m = 0
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt cùng dương
c) Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc m
Cho phương trình ( ẩn x ): x mũ 2 + 2(m+2)x +4m - 1= 0 (1)
a, giải phương trình (1) khi m=2
b, chứng minh rằng với mọi giá trị của m, phương trình (1) luôn có hai nghiệm phân biệt. Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình (1) không phụ thuộc vào m