Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=\frac{2009}{1}+\frac{2010}{2}+\frac{2011}{3}+...+\frac{4016}{2008}-2008\)
3. Tìm x biết :
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
2. Tìm x nguyên biết :
\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1006}-1}{4}\)
Tìm x:
a) x + (x+1) + (x+2) +...+ (x+2010)= 2029099
b) 2 + 4 + 6 + 8 +...+ 2x = 210
2) So Sánh:
a)\(A=\frac{2009^{2008+1}}{2009^{2009+1}}vàB=\frac{2009^{2009+1}}{2009^{2010+1}}\)
b) C= 1.3.5.....99 với \(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
tìm x biết
\(\frac{x+2}{2012}+\frac{x+3}{2011}+\frac{x+4}{2010}+\frac{x+5}{2009}\)
Tìm x biết \(\frac{x+2}{2012}+\frac{x+3}{2011}=\frac{x+4}{2010}+\frac{x+5}{2009}\)
1/TÍNH NHANH
a/ \(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
2/so sánh
a/\(\frac{2009}{2010}va\frac{2010}{2011}\) b/\(\frac{1}{3^{400}}va\frac{1}{4^{300}}\) c/\(\frac{200}{201}+\frac{201}{202}va\frac{200+201}{201+202}\) d/\(\frac{2008}{2008+2009}va\frac{2009}{2009+2010}\)
3/TÌM X BIẾT
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
GIÚP MÌNH NHA MAI MÌNH NỘP RÙI
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
1.Tính tổng
\(S=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)
2.Tìm x
\(5^x+5^{x+2}=650\)
3.CMR
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
4. Cho \(A=\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2010}+\frac{1}{2011}\)
So sánh A và B
Bài \(1:\)TÌM \(x:\)
\(a,\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{2013}\)
\(b,\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(c,\frac{x+5}{205}+\frac{x+4}{204}+\frac{x+3}{203}=\frac{x+166}{366}+\frac{x+167}{367}+\frac{x+168}{368}\)
\(d,\) \(x.\)\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}{\frac{2011}{1}+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{2}{2011}+\frac{1}{2012}}=1\)