Đặt \(S=\frac{3x+4}{2x+1}=\frac{2\left(3x+8\right)}{2\left(2x+1\right)}=\frac{6x+8}{2\left(2x+1\right)}=\frac{6x+3+5}{2\left(2x+1\right)}=\frac{3\left(2x+1\right)+5}{2\left(2x+1\right)}=\frac{3}{2}+\frac{5}{2x+1}\)
Xét\(2x+1< 0\Rightarrow\frac{5}{2\left(2x+1\right)}< 0\Rightarrow A>\frac{3}{2}\)
Xét \(2x+1< 0\)
Mà\(2x+1\in Z\)(vì \(x\in Z\))\(\Rightarrow2x+1\ge1\). Ta có:\(\frac{5}{2\left(2x+1\right)}< \frac{5}{2}\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4\)
\(\Rightarrow A=4\Leftrightarrow2x+1=1\Leftrightarrow2x=0\Leftrightarrow0\)
Vậy GTNN của A=4 khi x=0