Tìm X
a) (\(\dfrac{1}{4}\) - X) ( X + \(\dfrac{2}{5}\) ) = 0
b) I 2x + 1 I +\(\dfrac{2}{3}\) = 2
c) (2x - 3 )\(^2\) = 36
d) 7\(^x\) + 2 +2 x 7\(^x\) = 357
\(\dfrac{x-3}{5-x}\)=\(\dfrac{5}{7}\)
\(\dfrac{|x-2|}{2}\)=\(\dfrac{|2x+3|}{3}\)
tìm x thuộc Q
Bài 4: tìm x:
a) \(\dfrac{4}{3}\) + (1,25 - x) = 2,25
b) \(\dfrac{17}{6}\) - (x - \(\dfrac{7}{6}\) ) = \(\dfrac{7}{4}\)
c) 4 - (2x + 1) = 3 - \(\dfrac{1}{3}\)
bài 15:
a) (\(\dfrac{-2}{3}\))9 : x = (\(\dfrac{-2}{3}\))
b) x : (\(\dfrac{4}{9}\))5 = (\(\dfrac{4}{9}\))4
c) (x + 4)3 = -125
d) (10 - 5x)3 = 64
e) (4x + 5)2 = 81
Bài 16:
a) 4 - \(1\dfrac{2}{5}\) - \(\dfrac{8}{3}\)
b) -0,6 - \(\dfrac{-4}{9}\) - \(\dfrac{16}{15}\)
c) \(-\dfrac{15}{4}\) . (\(\dfrac{-7}{15}\)) . (\(-2\dfrac{2}{5}\)
Gi ải gấp giúp mình ạ, mình rất cần gấp
Tìm x,y,z biết :
1) \(\dfrac{x}{-7}=\dfrac{y}{4}\) và \(2x-3y=-78\)
2) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}\) và \(x-y+z=-15\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Tìm x:
a) \(-\dfrac{4}{7}\) - x = \(\dfrac{3}{5}\) - 2x
b) (\(\dfrac{3}{8}\) - \(\dfrac{1}{5}\)) + (\(\dfrac{5}{8}\) - x) = \(\dfrac{1}{5}\)
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
Tìm x và y
\(\dfrac{x}{3}=\dfrac{y}{4}\)và\(x+y=14\)
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
Tìm x:
a) \(\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
b) \(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\left(\dfrac{7}{x}-2\right)\)