\(\sqrt{\frac{2x-3}{x-1}}=2\Leftrightarrow\sqrt{\frac{2x-3}{x-1}}=\sqrt{4}\Leftrightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow2x-3=4\cdot\left(x-1\right)\)
\(\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x-4x=-4+3\)
\(\Leftrightarrow-2x=-1\Leftrightarrow x=\frac{1}{2}\)
ĐKXĐ:
x-1>0
x>1
\(\sqrt{\frac{2x-3}{x-1}}=2\)
<=>\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=\frac{2\sqrt{x-1}}{\sqrt{x-1}}\)
<=>\(\sqrt{2x-3}=2\sqrt{x-1}\)
<=>\(\left(\sqrt{2x-3}\right)^2=\left(2\sqrt{x-1}\right)^2\)
<=>\(2x-3=4.\left(x-1\right)\)
<=>\(2x-3=4x-4\)
<=>\(-2x=-1\)
<=>\(x=\frac{1}{2}\)