Ta có:
\(A=\frac{6x-3}{6x^3-11x^2+10x-3}=\frac{3\left(2x-1\right)}{\left(2x-1\right)\left(3x^2-4x+3\right)}=\frac{3}{3x^2-4x+3}\) nhận giá trị nguyên khi \(\frac{3}{3x^2-4x+3}\) nhận giá trị nguyên.
Mà \(3x^2-4x+3=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\left(\frac{2}{\sqrt{3}}\right)^2+\frac{5}{3}=\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2+\frac{5}{3}\ge\frac{5}{3}\)
\(\Rightarrow\) \(0<\frac{3}{3x^2-4x+3}\le\frac{9}{5}\)
Do đó, giá trị nguyên của \(\frac{3}{3x^2-4x+3}\) là \(1\)
\(\frac{3}{3x^2-4x+3}=1\) \(\Rightarrow\) \(3x^2-4x+3=3\)
\(\Leftrightarrow\) \(3x^2-4x=0\)
\(\Leftrightarrow\) \(x\left(3x-4\right)=0\)
\(\Leftrightarrow\) \(x_1=0\) \(;\) \(x_2=\frac{4}{3}\)
Khi đó, \(A_1=A_2=1\)
Vậy, với \(x\in\left\{0;\frac{4}{3}\right\}\) thì giá trị nguyên của \(A\) khi đó là \(1\)