\(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2016}-1\right)-\left(\frac{x-3}{2014}-1\right)=\left(\frac{x-4}{2013}-1\right)\)
\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}=\frac{x-2017}{2013}\)
\(\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
\(x-2017=0\left(vì\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\right)\)
x=2017