b)
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\frac{1.2.3.4.....30.31}{4.6.8.10....62.64}=2^x\)
\(\frac{1.2.3.4.5....30.31}{2.2.2.3.2.4.2.5.....2.31.64}=2^x\)
\(\frac{1.2.3.4.5.....30.31}{\left(2.2.2....2.2\right).\left(2.3.4.5....30.31\right).64}=2^x\)
\(2.2.2.2.2.....2.64=2^x\)
\(2^{31}.2^6=2^x\)
\(2^{37}=2^x\)
=> \(x=37\)
\(\text{a)5x+2=625 }\)
<=>5x+2=54
<=>x+2=4
<=>x=2