ai tích mình ,mình tích lại cho
mình tick 2 lần rùi đó bn tivhs cho mình đi
ai tích mình ,mình tích lại cho
mình tick 2 lần rùi đó bn tivhs cho mình đi
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó
a) A={x ∈ R|(2x2 - 5x + 3)(x2 - 4x + 3)= 0}.
b) B={x ∈ R|(x2 - 10x + 21)(x3 - x)= 0}.
c) C={x ∈ N|x + 3 < 4 + 2x; 5x - 3 < 4x - 1}.
d) D={x ∈ Z||x + 2| ≤ 3}.
e)E={x ∈ R|x2 + x + 3 = 0}.
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
tính hộ chúa con cuối với " ko dùng coccoc math " 100% sai " bạn nào có máy tính casio bấm hộ "
\(x^2+3=x+8+2x-x^2+2x\sqrt{8+2x-x^2}.\)
\(2x^2-3x-5=2x\sqrt{8+2x-x^2}\)
\(4x^4-12x^3-11x^2+30x+25=-4x^4+8x^3+32x^2\)
\(\left(X+1\right)^2\left(2x-5\right)^2+4x^4-8x^3-32x^2=0\)
\(\left(X-1\right)\left(8x^3-12x^2-55x-25\right)=0\)
\(8x^3-12x^2-55x-25=0\)
\(\Delta=144+1320=1464>0\)
\(k=\frac{47520+3456+43200}{2\sqrt{1464^3}}=\frac{94176}{2\sqrt{1464^3}}=\frac{47088}{\sqrt{1464^3}}< 1\)
\(x1=\frac{2\sqrt{1464}cos\left(arccos\left(\frac{47088}{\sqrt{1464^3}}\right)-\frac{2pi}{3}\right)+12}{24}=?\)
x2=...
x3=......
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
Cho \(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
a) Rút gọn P
b) Tìm x để P = 0
c) Tìm x để P>0
1,(x-18)-42=(23-43)-(70+x)
2.Tính tổng
a,1+(-2)+3+(-4)+...+19+(-20)
b,1-2+3-4+...+99-100
c,2-4+6-8+....+48-50
d,-1+3-5+7-..+97-99
e,1+2-3-4+...+97+98-99-100
3.Tìm x
a,x.(x+7)=0
b,(x+12).(x-3)=0
c,(-x+5).(3-x)=0
d,x.(2+x).(7-x)=0
e,(x-1).(x+2).(-x-3)=0
4.Viết tích dưới dạng các tổng sau
a,ab+ac
b,ab-ac+ad
c,ax-bx-cx+dx
d,a(b+c)-d(b+c)
e,ac-ad+bc-bd
f,ax+by+bx+ay
giúp mik vs
Bài toán 1. So sánh: 200920 và 2009200910
Bài toán 2. Tính tỉ số , biết:
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
1. \(\frac{x^3-10x^2+25x}{x^2-5x}\)\(=0\) ( đkxđ: \(x\ne0;5\))
<=> \(\frac{x\left(x-5\right)^2}{x\left(x-5\right)}=0\)<=> \(x-5=0\)<=> vô no
2. \(A=\)\(\frac{2x^2-2}{x^3-x^2-4x+4}\)\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x-2\right)\left(x+2\right)}\) ( a, đkxđ: \(x\ne1;\pm2\))
b, \(A=0\)<=> \(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}=0\)<=> \(x=-1\)( TM) . Vậy \(A=0\Leftrightarrow x=-1\)
3. \(B=\frac{3x^2-12}{\left(x-3\right)\left(x^2+4x+4\right)}\)\(=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)^2}\) ( a, đkxđ: \(x\ne3,-2\))
\(b,B=0\Leftrightarrow\frac{3\left(x-2\right)}{\left(x-3\right)\left(x+2\right)}=0\Leftrightarrow x=2\left(tm\right)\). Vậy \(B=0\Leftrightarrow x=2\)
Có vẻ khó
x=1 là nghiệm của bất phương trình nào dưới đây?
-4x+3\gt0−4x+3>0.
-2x+3\le0−2x+3≤0.
x-3\ge0x−3≥0.
3x-4\lt03x−4<0.
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)