a, \(\left|\frac{2}{5}x-\frac{1}{10}\right|+\left|\frac{1}{2}y-\frac{1}{3}\right|\le0\)
Vì giá trị tuyệt đối luôn luôn \(\ge0\)
=> \(\left|\frac{2}{5}x-\frac{1}{10}\right|+\left|\frac{1}{2}y-\frac{1}{3}\right|=0\)
=> \(\left|\frac{2}{5}x-\frac{1}{10}\right|=0\) hoặc \(\left|\frac{1}{2}y-\frac{1}{3}\right|=0\)
TH1: \(\frac{2}{5}x-\frac{1}{10}=0\)
\(\frac{2}{5}x=\frac{1}{10}\)
\(x=\frac{1}{10}.\frac{5}{2}=\frac{1}{4}\)
TH2: \(\frac{1}{2}y-\frac{1}{3}=0\)
\(\frac{1}{2}y=\frac{1}{3}\)
\(y=\frac{1}{3}.2=\frac{2}{3}\)
=> x có 2 nghiệm { 1/4; 2/3 }