a) \(\left(19x+2\cdot5^2\right)\div14=\left(13-8\right)^2-4^2\)
\(\left(19x+2\cdot25\right)\div14=5^2-16\)
\(\left(19x+50\right)\div14=25-16=9\)
\(19x+50=9\cdot14=126\)
\(19x=126-50=76\)
\(x=76\div19=4\)
b) \(2\cdot3^x=10\cdot3^{12}+8\cdot\left(3^3\right)^4\)
\(2\cdot3^x=\left(10+8\right)\cdot3^{12}\)
\(2\cdot3^x=18\cdot3^{12}\)
\(\Rightarrow2\cdot3^x=2\cdot3^2\cdot3^{12}\Rightarrow2\cdot3^x=2\cdot3^{15}\Rightarrow x=15\)
a, \left(19.x+2.5^2\right)\div14=\left(13-8\right)^2-4^2(19.x+2.52)÷14=(13−8)2−42
\left(19.x+2.25\right)\div14=5^2-4^2(19.x+2.25)÷14=52−42
\left(19.x+2.25\right)\div14=25-16(19.x+2.25)÷14=25−16
\left(19.x+50\right)\div14=9(19.x+50)÷14=9
\left(19.x+50\right)=9.14(19.x+50)=9.14
19.x+50=12619.x+50=126
19.x=126-5019.x=126−50
19.x=7619.x=76
\Rightarrow x=76\div19⇒x=76÷19
\Rightarrow x=4⇒x=4
Vậy x = 4
b, 2.3^x=10.3^{12}+8.27^42.3x=10.312+8.274
2.3^x=10.3^{12}+8.\left(3^3\right)^42.3x=10.312+8.(33)4
2.3^x=10.3^{12}+8.3^{12}2.3x=10.312+8.312
2.3^x=\left(10+8\right).3^{12}2.3x=(10+8).312
2.3^x=18.3^{12}2.3x=18.312
2.3^x=2.3^3.3^{12}2.3x=2.33.312
2.3^x=2.3^{15}2.3x=2.315
\Rightarrow x=15⇒x=15
Vậy x = 15