\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{9998}{9999}\)
\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{9998}{9999}\)
\(\Leftrightarrow5\left(1-\frac{1}{x+1}\right)=\frac{9998}{9999}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{9998}{9999}\div5\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{9998}{49995}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9998}{49995}=\frac{39997}{49995}\)
\(\Leftrightarrow x=\frac{9998}{39997}\)