\(2^{x+1}-2^x=32.\)
\(\Leftrightarrow2^x.\left(2-1\right)=32\)
\(\Leftrightarrow2^x.1=2^5\)
\(\Leftrightarrow x=5\)
\(2^{x+1}-2^x=32\)
\(2^x\cdot2-2^x\cdot1=2^5\)
\(2^x\cdot\left(2-1\right)=2^5\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
\(2^{x+1}-2^x=32\)
\(\Leftrightarrow2^x\times2^1-2^x=32\)
\(\Leftrightarrow2^x\times\left(2^1-1\right)=32\)
\(\Leftrightarrow2^x\times1=32\)
\(\Leftrightarrow2^x=32\div1\)
\(\Leftrightarrow2^x=32\)\(\Leftrightarrow2^x=2^5\Rightarrow x=5\)
Vậy x=5
Ta có: \(2^{x+1}-2^x=32\Leftrightarrow2^x\left(2-1\right)=2^5\Leftrightarrow2^x=2^5\Rightarrow x=5\)
\(2^x.2-2^x=32\)
\(2^x\left(2-1\right)=32\)
\(2^x=32\)
\(x=5\)
2^x+1 -2x=32
2^x.(2-1)=32
2^x .1=32
2^x=32:1
2^x=32
2^x=2^5
=> x=5
2x+1 - 2x = 32
<=> 2x . 2 - 2x = 32
<=> 2x ( 2 - 1 ) = 32
<=> 2x . 1 = 32
<=> 2x = 25
=> x = 5