giải phương trình với tham số a:
\(3x+\frac{x}{a}-\frac{3a}{a+1}=\frac{4ax}{\left(a+1\right)^2}+\frac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\frac{3a^2}{\left(a+1\right)^3}\)
Giải các phương trình sau :
a) \(x^4-\left(x^2+2\right)=4\)
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c) \(\frac{2x-10}{4}=5+\frac{2-3x}{6}\)
d) \(\frac{2x}{\left(x-3\right)\left(x+1\right)}+\frac{x}{2\left(x-3\right)}=\frac{x}{2x+2}\)
e) \(\left(\frac{x+2}{x}\right)^2+\left(\frac{x}{x+2}\right)^2=2\)
f) \(\left(x-a\right)\left(x+a\right)+2x+a^2=-1\)
g) \(\frac{x-a}{2a}+\frac{x-2a}{3a}+\frac{x-3a}{4a}+\frac{x-4a}{5a}=-4\)
h) \(\left(x^2-3x+4\right)^2=\left(x^2-2x+3\right)\left(x^2-4x+5\right)\)
i ) \(\frac{x^2-4x+12}{x^2-4x+6}=x^2-4x+8\)
Thực hiện phép tính :
a)\(\frac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2xy^2}{x^4-2x^2y^2+y^4}+\frac{y^2}{\left(x^2-y^2\right)\left(x+y\right)}\)
b)\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^{8+1}}-\frac{16}{x^{16}+1}\)
c)\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
d)\(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+....+\frac{a}{x^2+19ax+90a^2}+\frac{1}{x+10a}\)
\(\left(a^2-4a^2\right)\left(\frac{2a}{a^2-4x^2}\right)+\frac{x+3}{2x^2+6x-ã-3a}\)
1.Thực phép tính nhanh
\(\frac{1}{x}\)+\(\frac{1}{x\left(x+1\right)}\)+\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)+....+\(\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
2: cho biểu thức :
A=\(\frac{x^2-2x+1}{x-1}\)+\(\frac{x^2+2x+1}{x+1}\)-3
a)Tìm điều kiện đê giá trị của biểu thức A được xác định
b)Rút gọn biểu thức A
c)Tính giá trị của A khi x =3
d)Tìm x khi A= -2
3)Tính
a)\(\frac{-1}{2-3x}\)+\(\frac{5}{3x-2}\) b)\(\frac{2a-1}{2a+1}\)-\(\frac{2a-3}{2a-1}\)c)\(\frac{2}{x+3}\)+\(\frac{3}{x^2-9}\)d)\(\frac{a^2-2a+1}{a^2-a}\)-\(\frac{2a^3-a^2}{a^4+a^3}\)
e)\(\frac{x^2+2}{x}\)-\(\frac{2x+2}{x}\)f)\(\frac{x+3}{x^2-y^2}\)-\(\frac{3-y}{x^2-y^2}\)g)\(\frac{5x+4}{3x+15}\)+\(\frac{x-2}{x+5}\)h)\(\frac{x+4}{2x+4}\)-\(\frac{x-2}{x^2-4}\)
Cho biểu thức A= \(\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
a) Rút gọn A
b) Tìm giá trị của A biết |x-5|=2
c) Tìm giá trị nguyên dương của x để A < 4 và A có giá trị là một số nguyên
1) Tìm GTLN của biểu thức \(A=\frac{12}{4+x+\sqrt{x}}\)
2) Biết \(b\ne3a;b\ne-3a\) và \(6a^2-15ab+5b^2=0\)
Tính \(D=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
1. tìm ĐKXĐ
2. Rút gọn
3.Tìm GTLN
1) Rút gọn :
\(B=\frac{\left(a+2b\right)^3-\left(a-2b\right)^3}{\left(2a+b\right)^3-\left(2a-b\right)^3}:\frac{3a^4+7a^2b^2+3b^4}{4a^4+7a^2b^2+3b^4}\)