( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
(x + 1) + (x+2) +.....+ (x + 100) = 5750
=> x + 1 + x +2 +.....+ x + 100 = 5750
=> \(100x+\frac{\left(1+100\right).100}{2}=5750.\)
=> 100x = 700
=> x = 7
(x+1)(x+2)(x+3)+...+(x+100)=5750
x(1+2+3+...+100) = 5750
Số số hạng của biểu thức 1+2+3+..+100 là:
(100-1):1 +1= 101 (số hạng)
Tổng 1+2+3+...+100 là:
(100+1) * 101 :2 = 5050
x* 5050= 5750
x= \(\frac{115}{101}\)
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7