x=1+3+32+...+3100
=>3x=3+32+33+...+3101
=>3x-x=(3+32+33+...+3101)-(1+3+32+...+3100)
=>2x=3101-1
=>x=\(\frac{3^{101}-1}{2}\)
Vậy x=\(\frac{3^{101}-1}{2}\)
\(x=1+3+3^2+...+3^{100}\Rightarrow3.x=3+3^2+3^3+...+3^{100}+3^{101}\)
\(\Rightarrow3.x-x=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)=3^{101}-1\)
\(\Rightarrow2.x=3^{101}-1\Rightarrow x=\frac{3^{101}-1}{2}\)