\(\frac{1}{16}=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
=> \(\left(\frac{1}{3}-2x\right)=\frac{1}{4}\)hoặc \(\left(-\frac{1}{4}\right)\)
*) \(\left(\frac{1}{3}-2x\right)=\frac{1}{4}\)
\(\Rightarrow2x=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}\Rightarrow x=\frac{1}{12}:2=\frac{1}{24}\)
*) \(\left(\frac{1}{3}-2x\right)=\left(-\frac{1}{4}\right)\)
\(\Rightarrow2x=\frac{1}{3}-\left(-\frac{1}{4}\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\Rightarrow x=\frac{7}{12}:2=\frac{7}{24}\)
Vậy \(x\in\left\{\frac{1}{24};\frac{7}{24}\right\}\)