Tìm x biết
\(x\left(x+1\right)=0\)
\(3x\left(2x-1\right)=0\)
\(\left(x+1\right)\cdot\left(x-2\right)=0\)
\(x^2\cdot\left(x+4\right)=0\)
\(\left(x+1\right)^2\cdot\left(3x-5\right)=0\)
\(x^2+1=0\)
\(3x^2\cdot\left(2x-5\right)^2=0\)
\(1\cdot2\cdot3\cdot.....\cdot100x=0\)
\(\left(\frac{3}{4}\right)^x=1\)
\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}\)
Tìm x biết :
a, ( 4x - 9 ) . ( 2,5 + \(\frac{-7}{3}\). x ) = 0
b, \(\frac{1}{x\cdot\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\cdot\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
a,\(\left(x-1\right)\cdot\left(x+2\right)>0\)
b,\(\left(\frac{1}{2}-x\right)\cdot\left(2x-1\right)< 0\)
c,\(\frac{x-1}{2007}+\frac{x-2}{2008}=\frac{x-3}{2009}+\frac{x-4}{2010}\)
d,\(\left(2x-1\right)\cdot\left(2-x\right)>0\)
Tìm x
bạn nào bít thì giúp mình nha!!!
Tìm x, biết :
\(\left(3-\frac{1}{2}\cdot x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
Tìm x biết:
\(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}+\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}+\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}=\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
a)\(\frac{3}{2}-\frac{1}{3}\cdot\left(x-\frac{3}{2}\right)-\frac{1}{2}\cdot\left(2\cdot x+1\right)=5\)
b)\(\left(x+\frac{1}{2}\right)\cdot\left(x-\frac{3}{4}\right)=0\)
c)\(2x-3=x+\frac{1}{2}\)
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)
Tìm x:
\(a,\left(2-x\right)\cdot\left(2x+1\right)>0\)
\(b,\left(2x+3\right)\cdot\left(x+1\right)< 0\)