\(|x+\frac{1}{1\cdot5}|+|x+\frac{1}{5\cdot9}|+|x+\frac{1}{9\cdot13}|+...+|x+\frac{1}{379\cdot401}|=101x\)
Ta có:
\(|x+\frac{1}{1\cdot5}|\ge0\forall x\)
\(|x+\frac{1}{5\cdot9}|\ge0\forall x\)
\(|x+\frac{1}{9\cdot13}|\ge0\forall x\)
\(......\)
\(|x+\frac{1}{397\cdot401}|\ge0\forall x\)
\(\Rightarrow|x+\frac{1}{1\cdot5}|+|x+\frac{1}{5\cdot9}|+|x+\frac{1}{9\cdot13}|+...+|x+\frac{1}{397\cdot401}|\ge0\)
\(\Rightarrow\left(x+\frac{1}{1\cdot5}\right)+\left(x+\frac{1}{5\cdot9}\right)+\left(x+\frac{1}{9\cdot13}\right)+...+\left(x+\frac{1}{397\cdot401}\right)=101x\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\right)=101x\)
Đặt \(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\)
\(\Rightarrow4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\right)\)
\(\Rightarrow4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{397\cdot401}\)
\(\Rightarrow4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{397}-\frac{1}{401}\)
\(\Rightarrow4A=1-\frac{1}{401}\)
\(\Rightarrow4A=\frac{400}{401}\)
\(\Rightarrow A=\frac{400}{401}:4\)
\(\Rightarrow A=\frac{400}{401}\cdot\frac{1}{4}\)
\(\Rightarrow A=\frac{100}{401}\)
\(\Rightarrow100x+\frac{100}{401}=101x\)
\(\Rightarrow101x-100x=\frac{100}{401}\)
\(\Rightarrow x=\frac{100}{401}\)
Vậy \(x=\frac{100}{401}\)