\(a,\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=1-\frac{15}{16}\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{16}\div4\)
\(\Leftrightarrow x=\frac{1}{64}\)
\(b,x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Leftrightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{13}+...+\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\frac{4}{55}\right]=\frac{3}{11}\)
\(\Leftrightarrow x-52=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}+52\)
\(\Leftrightarrow x=\frac{575}{11}\)