Ta có:
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}\)
\(=1-\frac{1}{5x+6}\)
\(=\frac{5x+5}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow5x+5=2010\)
\(\Rightarrow5x=2010-5=2005\)
\(\Rightarrow x=2005:5=401\)
Vậy x=401