x2(2x+3)+(2x+3)=0
(2x+3)(x2+1)=0
2x+3=0
x=-3/2
\(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x^3+2x+3x^2+3=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\) vì \(x^2+1>0\) nên \(2x+3=0\Rightarrow x=-\frac{3}{2}\)
\(2x^3+3x^2+2x+3=0\)
\(x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)( Vì \(x^2\ge0\forall x\Rightarrow x^2+1>0\forall x\))
\(x=-\frac{3}{2}\)
Vậy ...
2x3 + 3x2 + 2x + 3 = 0
<=> (2x + 3)(x2 + 1) = 0
<=> (2x + 3) = 0
<=> 2x = 0 - 3
<=> 2x = -3
<=> 2x/2 = -3/2
<=> x = -3/2
=> x = -3/2
<=> 2x3+2x+3x2+3=0
<=> 2x(x2+1)+3(x2+1)=0
<=>(x2+1)(2x+3)=0
<=> x2+1=0( vô lí vì x2 >= 0, 1 > 0)
2x+3=0 <=> x = -3/2
Vậy nghiệm của phuơng trình là x = -3/2
\(2x^3+3x^2+2x+3=0\)
\(=\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(=2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(=\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-3}{2}\end{cases}}}\)
HOk Tốt!!!
\(2x^3+3x^2+2x+3=0\)
\(\Rightarrow2x\left(x^2+1\right)+3x\left(x^2+1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(2x+3x\right)=0\)\
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\left(loại\right)\\2x+3x=0\Rightarrow x=-5\end{cases}}\)