Giải PT sau
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
Tìm x, biết:
a, \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{4}{3}\sqrt{9x+45}=6\)
b, \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
\(\sqrt{15x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
A)\(\sqrt{25x-25}\)-\(\dfrac{15}{2}\)\(\sqrt{\dfrac{x-1}{9}}\)=6+\(\sqrt{x-1}\)
B) A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{x\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt điều kiện để biểu thức có nghĩa A
b) Rút gọn biểu thức A
GPT: \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
F(x)=x5+ax4+bx3+cx2+dx+e .Biết f(1)=1 ;f(2)=4 ;f(3)=9 ;f(4)=16 ;f(5)=25 ; a)Tính f(6)? b)Tìm số tự nhiên n. Biết f(x) chia cho (x-n) dư 448767600049
tìm x biết
1. √x^2 - 25 = x-5
2. √x^2 - 9 - 5√X+3 =0
Rút Gọn Biểu Thức
1, \(\dfrac{a-6\sqrt{a}+9}{5\sqrt{a}-15}\) với a≥0, a≠9
2.\(5x-\sqrt{x^2-10x+25}\) với x nhỏ hơn 5
3,\(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) với x≠1
4, 3√5 \(\sqrt{46-6v5}\)