Ta có: 1+2+3+4+...+x=aaa
<=>\(\frac{\left(x+1\right)x}{2}=111a\)
<=> (x+1)x = 37*3*2*a
<=> (x+1)x = 37*6*a
Vì x+1 và x là 2 STN liên tiếp nên 37 và 6a là 2 STN liên tiếp
=> 6a=36 hoặc 6a=38
<=> a=6 hoặc a= 38/6
Mà a là chữ số nên a=6
=> (x+1)x= 36 * 37
<=> x=36
Vậy x=36
Ta có công thức sau: 1 + 2 + 3 + 4 +...+ x = x(x + 1)/2
Với x lẻ => x = 2k + 1 (k là số tự nhiên)
=> 1 + 2 + 3 + 4 +...+ x
= 1 + 2 + 3 +... + 2k + (2k+1)
= [1 + 2 + 3 +... + 2k] + (2k + 1)
= [ (1 + 2k) + (2 + 2k - 1) + ....] + (2k + 1).
Ta có từ 1 -> 2k có : (2k - 1)/1 + 1 số
=> Từ 1 - > 2k có 2k số => có k cặp (1 + 2k)
=> [ (1 + 2k) + (2 + 2k - 1) + ....] + (2k + 1) = k(2k + 1) + (2k + 1)
= (2k + 1)(k + 1)
= [2.(k + 1)(2k + 1)]/2
= [(2k + 2)(2k + 1)]/2 Thay x = 2k + 1 vào thì ta đựơc
= x(x + 1)/2
Với x chẵn thì đặt x = 2k (k là số tự nhiên)
=> 1 + 2+ 3 +... + x = 1 + 2 + 3 + ... + 2k
= (1 + 2k) + (2 + 2k - 1) + ...
= (1 + 2k).k (Từ 1 -> 2k có 2k số nên có k cặp)
= [2k(2k + 1)]/2
= x(x + 1)/2
Như vậy ta đã chứng minh được công thức trên
Áp dụng vào ta được:
x(x + 1)/2 = aaa
Do 111 ≤ aaa ≤ 999
=> 111 ≤ x(x + 1)/2 ≤ 999
<=> 222 ≤ x(x + 1) ≤ 1998
<=> 888 ≤ 4x(x + 1) ≤ 7992
<=> 888 ≤ 4x² + 4x ≤ 7992
<=> 888 + 1 ≤ 4x² + 4x + 1 ≤ 7992 + 1
<=> 889 ≤ (2x + 1)² ≤ 7993
=> 30 ≤ (2x + 1) ≤ 89 (Do x là số tự nhiên)
<=> 30 - 1 ≤ 2x ≤ 89 - 1
<=> 29 ≤ 2x ≤ 88
=> 15 ≤ x ≤ 44 (Do x là số tự nhiên)
=> x ∈ {15; 16 ; 17; ... ; 44 }
Thử các giá trị của x từ 15 - > 44 ta được chí có x = 36 thì đuợc kết quả là 666.
Vậy x = 36 .
Nguyễn Khánh Ngân